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ABSTRACT 

This research illustrated the procedure in selecting the best model in determining the 

selling price of house using multiple regression for the data set which was collected 
in Oxford, Ohio, in 1988. The five independent variables considered in this data set 
are: floor area (square feet), number of rooms, age of house (years), number of 
bedrooms and number of bathrooms. The multiple regression models were involved 
up to the fourth-order interaction and there were 80 possible models considered. To 
enhance the understanding of the whole concept in this work, multiple regression 
with eight selection criteria (8SC) had been explored and presented. In this work the 
process of getting the best model from the selected models had been illustrated. The 

progressive elimination of variables with the highest p-value (individual test) was 
employed to get the selected model. In conclusion the best model obtained in 
determining the house selling price was M73.15 (ie. 73rd model). 
 

Keywords: multiple regression, fourth-order interaction variables, eight selection 
criteria (8SC), progressive elimination of variables 

 

 

INTRODUCTION 

Regression analysis is the process of finding a mathematical model 
that best fits the data. Often sample data is used to investigate the 

relationship between two or more variables. The ultimate goal is to create a 

model that can be used to predict the value of a single variable. Multiple 

regression is the extension of simple regression. Usually, a model is simply 
called an equation. Model can be used to predict weather, the performance 

of the stock market, sales, profits, river levels and so on. Nikolopoulos et al. 

(2007) suggested that multiple linear regression is a common choice of 
method when a forecast is required and where data on several relevant 

independent variables are available. The technique has been used to produce 

forecasts in a wide range of areas and there is evidence that it is often used 
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by companies to derive forecasts of demand from marketing variables and 

various macroeconomic measures. 
 

Multiple regression has been effectively used in many business 

applications. For example, Evans and Olson (2003) studied the 2000 NFL 
data, it would be logical to suspect that the number of Games Won would 

depend not only on Yards Gained but also on the other variables like 

Takeaways, Giveaways, Yards Allowed and Points Scored.  

 
 Multiple linear regression is a popular method for producing 

forecasts when data on relevant independent variables are available.  In this 

study, Nikolopoulos et al., (2007) compared the accuracy of the technique in 
forecasting the impact on Greek TV audience shares of programmes 

showing sports events with forecasts produced by a simple bivariate 

regression model. Three different types of artificial neural network, three 

forms of nearest neighbour analysis and human judgment. The data used in 
this study is a television audience rating from 1996 to 2000 in Greece.  

  

 Nikolopoulos et al., (2007) study shows that the multiple 
regressions models performed relatively badly as a forecasting tool and were 

outperformed by either conceptually simpler method like the bivariate 

regression model and nearest neighbour analysis. The multiple regression 
models were also outperformed badly compared to complex method like 

artificial neural method and forecasts based on human judgement. The 

relatively poor performance of multiple linear regression appears to result 

both from its tendency to over fit in sample data and its inability to handle 
complex non-linearities in the data. Forecasts based on a simple bivariate 

regression model, two types of artificial neural network and a simple nearest 

neighbour analysis shows higher accuracy than a multiple linear regression. 

 

 

MULTIPLE REGRESSION 

Multiple regression is a generalization of the simple linear regression 

analysis. Simple regression analysis could analyze a relationship between a 
dependent variable with a single independent variable. The same idea was 

used to analyze relationship between a dependent variable with two or more 

independent variables.  
 

Several variables as 1 2, ,...,
k

X X X  capable of providing a better 

prediction of the value Y where k  is the number of variables (with K =k+1 
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is the number of parameters). Lind et al., (2005) defines the general multiple 

regression model as 
 

                         0 1 1 2 2 ...
i i i k ki i

Y X X X uβ β β β= + + + + +           

 
where, 

 

    
i

Y  is random variable representing the ith value of the dependent 

variable Y  
 

1 2, ,...,
i i ki

X X X  are the ith value of independent variable for 

1,2,...,i n= . 

 

Basic assumptions of multiple regression models are made about the 

error terms ui and the values of independent variables 1 2, ,...,
k

X X X  as 

following (Kenkel, 1996): 

 

a. Normality: For any value of the independent variables, the error 
term ui is a normally distributed random variable. 

b. Zero mean: For any set of values of the independent variables,  

E(ui) = 0. 

c. Homoscedasticity: The variance of ui denoted as 2

u
σ is the same for 

all values of the independent variables. 

d. No serial correlation: The error terms are independent of one 

another for i j≠ . 

e. Independence of ui and Xji: The error terms ui are independent of the 

values of the independent variables Xji. The independent variables 

are either fixed numbers or random variables that are independent of 
the error terms. If the Xji’s are random variables, then all inferences 

are carried out conditionally on the observed values of the Xji’s. 

 
In this study the variables are the selling price (Y) of a house to its 

characteristics such as square feet (X1), number of rooms(X2), number of 

bedrooms (X3), age of the house (X4) and number of bathrooms (X5). The 

way to determine the possible models are shown in the Table 1 below: 
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TABLE 1: All possible models  
 

INTERACTION Number of 

Variables 

 

Individual First 

Order 

Second 

Order 

Third 

Order 

Fourth 

Order 
TOTAL 

1 5 - - - - 5 

2 10 10 - - - 20 

3 10 10 10 - - 30 

4 5 5 5 5 - 20 

5 1 1 1 1 1 5 

TOTAL 31 26 16 6 1 80 

 

With five variables there are 80 models with interactions. SPSS is 

needed to choose the selected models from all possible models. The SPSS 

output will show the model summary table, ANOVA table and Coefficients 
table. The procedures in obtaining a selected model after the first multiple 

regression analysis run in SPSS are as below (Lind et al., 2005): 

 

i. Drop the independent variable with the highest p-value (only one 
variable will be dropped each time) and rerun the analysis with the 

remaining variables 

ii. Conduct individual test on the new regression equation. If there are 

still regression coefficient that are not significant (p-value > α), drop 
the variable with the highest p-value again 

iii. Repeat the steps above until the p-value of each variable are 

significant 
 

After the procedure of obtain the selected model, the model 

selection criteria will be used to choose the best model. The measure of 

goodness of fit R
2
 (coefficient of multiple determination), 

2
R (adjusted 

coefficient of multiple determination) and SSE (Sum of square Error) are the 

most commonly used criteria for model comparison. R
2 

will clearly lie 

between 0 and 1. The closer the observed points are to the estimated straight 
line, the better the “fit”, which means that SSE will be smaller and R

2 
will be 

higher. 
2

R  is a better measure of goodness of fit because its allows for the 

trade-off between increased 
 
R

2
 and decreased degree of freedom. SSE is the 

unexplained variation because � tu  is the effect of variables other than Xt  that 

are not in the model. The R
2
, 

2
R  and SSE has weakness in selecting the best 

model. The R
2
 did not consider the number of parameters included in the 

model and 
2

R  is useful only to determine the fraction of the variation in Y  

explained by the Xs.  
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TABLE 2: Model Selection Criteria 
 

EIGHT SELECTION CRITERIA  (8SC) 

K= number of estimated parameters, n=sample size, SSE=sum of square errors 

AIC:       ( )( )nK
e

n

SSE /2

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


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 
 
 
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Recently several criteria to choose the best model have been 
proposed. These criteria take the form of the sum of square error (SSE) 

multiplied by a penalty factor that depends on complexity of the model. A 

more complex model will reduce SSE but raise the penalty. A model with a 
lower value of a criterion statistics is judged to be preferable. The model 

selection criteria are finite prediction error (FPE), Akaike information 

criterion (AIC), Hannan and Quinn criterion (HQ criterion), SCHWARZ, 

SHIBATA, RICE, generalized cross validation (GCV) and sigma square 
(SGMASQ).  Finite prediction error (FPE) and Akaike information criterion 

(AIC) was developed by Akaike (1970, 1974). HQ criterion was suggested 

by Hannan and Quinn in 1979.  Golub et al. (1979) developed generalized 
cross validation (GCV). Other criteria are included SCHWARZ (Schwarz, 

1978), SHIBATA (Shibata, 1981) and RICE (Rice, 1984). Table 2 shows the 

model selection criteria (Ramanathan, 2002). 

 

 

ANALYSIS 

The data used in this study is collected in Oxford, Ohio during 1988. 

In this study, we are relating the sales price (Y) of a house to its 

characteristics such as floor area in square feet (X1), number of rooms (X2), 
number of bedrooms (X3), the age of the house (X4) and number of 

bathrooms (X5). We analyse what is the contribution of a specific attribute is 

determining the sales price. The data collected for each of 63 single-family 

residences sold during 1988 in Oxford, Ohio. 
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TABLE 3: A correlation table for sales price and its characteristics. 

 
  sales_price X1 X2 X3 X4 X5 

sales_price Pearson 
Correlation 

1 .785(**) .580(**) .512(**) -.289(*) .651(**) 

 Sig. (2-tailed)   .000 .000 .000 .021 .000 

X1 Pearson 

Correlation 
.785(**) 1 .711(**) .754(**) -.109 .628(**) 

 Sig. (2-tailed) .000   .000 .000 .395 .000 

X2 Pearson 
Correlation 

.580(**) .711(**) 1 .722(**) .170 .402(**) 

 Sig. (2-tailed) .000 .000   .000 .183 .001 

X3 Pearson 
Correlation 

.512(**) .754(**) .722(**) 1 .017 .352(**) 

 Sig. (2-tailed) .000 .000 .000   .893 .005 

X4 Pearson 
Correlation 

-.289(*) -.109 .170 .017 1 -.409(**) 

 Sig. (2-tailed) .021 .395 .183 .893   .001 

X5 Pearson 
Correlation 

.651(**) .628(**) .402(**) .352(**) -.409(**) 1 

  Sig. (2-tailed) .000 .000 .001 .005 .001   

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 

 

Table 3 shows the relationship between selling price of a house and 

its characteristics such as floor area in square feet, number of rooms, number 
of bedrooms, the age of the house and number of bathrooms. There is a 

significant positive relationship (correlation coefficient) between selling 

price and square feet, indicating that selling price increase as the square feet 

increases (r = 0.785, p-value < 0.0001). There is a significant positive 
relationship between selling price and number of rooms, that the selling 

price increase as the number of rooms increase (r = 0.580, p-value < 0.001). 

The relationship between selling price and number of bedrooms is 
significant and positive relationship (r = 0.512, p-value < 0.001). Besides 

that there is a significant negative relationship between sales price and the 

age of the house, indicate that selling price decreases as the age of the house 

increase (r = -0.289, p-value < 0.001). Selling price and number of 
bathrooms has a significant positive relationship where selling price 

increases as the number of bathrooms increase (r = 0.651, p-value < 0.001). 

The relationship between independent variables (X1, X2, X3, X4 and X5) 
shows that there is no multicollinearity. 
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Figure 1: The matrix scatter plot of selling price, floor area in square feet(X1), number of 
rooms (X2), number of bedrooms (X3), the age of the house (X4) 

 and number of bathrooms (X5). 

 

 
All the possible models are subjected to individual test (based on p-

value). For illustration purpose, consider model M67 where Table 4 shows 

the p-value for each variable of the model. As can be seen from Table 4, 

each variable has p-value higher than 0.05 which means that the 
corresponding independent variable is not significant. Hence, by omitting 

the variable with highest p-value that is variable X3 (p-value =0.934) and 

rerun the analysis with remaining variables. The resulting p-value after 
eliminating variable X3 is shown in Table 5. 
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TABLE 4: The p-values and coefficient of variables in M67 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t p-value   

Variables 

  
B 

Std. 

Error 
Beta   

(Constant) -8.934 129.343   -0.069 0.945 

X3 3.533 42.723 0.067 0.083 0.934 

X4 2.711 3.681 1.773 0.736 0.465 

X5 37.513 69.879 0.545 0.537 0.594 

X34 -.648 1.218 -1.403 -0.532 0.597 

X35 4.421 22.360 0.279 0.198 0.844 

X45 -2.496 2.355 -2.212 -1.060 0.294 

X345 0.601 0.759 1.910 0.792 0.432 

 
TABLE 5: The p-values and coefficient after eliminating variable X3 

 
Unstandardized 

Coefficients 

Standardized 

Coefficients 
t p-value 

Variables 
 

B 
Std. 

Error 
Beta   

(Constant) 1.634 19.776   0.083 0.934 

X4 2.435 1.551 1.593 1.570 0.122 

X5 32.073 23.372 0.466 1.372 0.175 

X34 -0.556 0.489 -1.204 -1.137 0.260 

X35 6.211 5.535 0.392 1.122 0.267 

X45 -2.337 1.356 -2.071 -1.724 0.090 

X345 0.549 0.416 1.744 1.321 0.192 

 

TABLE 6: The p-values and coefficient after eliminate variable X35 

 
Unstandardized 

Coefficients 

Standardized 

Coefficients 
t 

p-

value Variables 
 

B 
Std. 

Error 
Beta   

(Constant) -5.787 18.680   -0.310 0.758 

X4 3.308 1.345 2.164 2.459 0.017 

X5 55.489 10.551 0.807 5.259 0.000 

X34 -0.800 0.439 -1.732 -1.824 0.073 

X45 -3.396 0.976 -3.010 -3.479 0.001 

X345 0.863 0.308 2.742 2.805 0.007 
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From Table 5, the variables in the new regression equation are not 

significant because all the variables had p-value larger than 0.05. The 
variable X35 (p-value =0.267) omitted from the model and rerun the analysis 

with the remaining variables. The new set of p-values after eliminating 

variable X35 is shown in Table 6. As can be seen from Table 6, the variable 
X34 is not significant (p-value > 0.05), X34 is omitted from the model and 

rerun the analysis. The p-values after eliminating variable X34 are shown in 

Table 7. 

 

TABLE 7: The coefficient after eliminate variable X34 

  

Variables 
Unstandardized 

Coefficients 

Standardized 

Coefficients 
t p-value 

 B 
Std. 

Error 
Beta   

(Constant) -7.329 19.031   -0.385 0.702 

X4 1.019 0.493 0.666 2.067 0.043 

X5 56.892 10.732 0.827 5.301 0.000 

X45 -1.825 0.468 -1.617 -3.899 0.000 

X345 0.323 0.086 1.027 3.771 0.000 

 

The Table 7 shows that all the remaining independent variables are 

significant where the p-value of each variable is less than 0.05. Thus, after 

the 3 variables had been omitted a selected model is obtained i.e. model 

M67.3 where 
4 5 45 345

7.329 1.019 56.892 1.825 0.323Y X X X X=− + + − + .  

 

Similar procedures are carried to all possible models systematically. 
At the end of the procedure, altogether there are 47 selected models obtained 

and their summary is shown in Table 8. For each selected model, find the 

value of each criterion mentioned in Table 2 and corresponding values are 
shown in Table 9.  

 

Majority of the criteria shown in Table 8 indicates that model 

M73.15 is the best model. 
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TABLE  8: The summary for selected models 

 

Selected 

Model 

Summary 

  

K 

=k+1 

  

SSE 

  

M1 M1 2 30998.9710 

M2 M2 2 53609.0350 

M3 M3 2 59601.8130 

M4 M4 2 74012.6580 

M5 M5 2 46527.2500 

M8 M8 3 27603.1960 

M9 M9 3 27654.2200 

M11 M11 3 41096.4610 

M12 M12 3 36779.0590 

M13 M13 3 52416.2600 

M14 M14 3 39148.0960 

M24 M24 4 34185.3180 

M34 M34.1 3 27328.9650 

M35 M35.1 => M35.2 2 28355.1480 

M36 M36.1 => M36.2 2 52105.2640 

M37 M37.1 3 40397.9520 

M38 M38.1 => M38.2 2 35395.2180 

M39 M39.1 3 51824.6620 

M40 M40.1 => M40.2 2 36751.5540 

M43 M43.1 => M43.2 4 24045.0190 

M44 M44.1 => M44.2 => M44.3 => M44.4 3 27524.7090 

M46 M46.1 => M46.2 => M46.3 6 23804.6840 

M48 M48.1 => M48.2 => M48.3 => M48.4 3 39493.5960 

M50 M50.1 => M50.2 => M50.3 => M50.4 3 31466.8550 

M52 M52.1 => M52.2 => M52.3 => M52.4 => M52.5 => M52.6 5 22116.7010 

M53 M53.1 => M53.2 => M53.3 => M53.4 => M53.5 => M53.6 => M53.7 4 26426.4150 

M54 M54.1 => M54.2 => M54.3 => M54.4 => M54.5 => M54.6 => M54.7 4 24110.5790 

M57 M57.1 =>… => M57.10 6 21774.7130 

M58 M58.1 => M58.2 => M58.3 => M58.4 4 26735.4780 

M59 M59.1 => M59.2 => M59.3 => M59.4 4 25591.7630 

M60 M60.1 => M60.2 => M60.3  5 24703.7830 

M62 M62.1 => M62.2 => M62.3 => M62.4 4 25499.6560 

M63 M63.1 => M63.2 => M63.3 => M63.4 4 25837.9670 

M66 M66.1 => M66.2 => M66.3 => M66.4 => M66.5 3 32497.3660 

M67 M67.1 => M67.2 => M67.3  5 35837.7440 

M68 M68.1 =>… => M68.8 7 19300.7880 

M69 M69.1 =>… => M69.9 6 21734.8560 

M70 M70.1 =>… => M70.10 5 22732.4740 
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TABLE  8 (continued): The summary for selected models  
 

Selected 

Model 

Summary 

  

K 

=k+1 

  

SSE 

  

M71 M71.1 =>… => M71.10 5 24178.5540 

M72 M72.1 =>… => M72.11 4 29244.9580 

M73 M73.1 =>… => M73.15  11 15073.4450 

M74 M74.1 =>… => M74.10 7 19300.7880 

M75 M75.1 =>… => M75.11 5 21565.1040 

M76 M76.1 =>… => M76.9 7 20962.8220 

M77 M77.1 =>… => M77.12 4 25499.6560 

M79 M79.1 =>… => M79.22 9 16634.4070 

M80 M80.1 =>… => M80.19 13 14840.3610 

 
TABLE 9: The corresponding selection criteria value for the selected models 

 

Selected 

Model R2 

Adj 

R2 AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M1 0.616 0.610 524.301 524.313 524.841 538.520 525.406 561.214 508.180 523.288 

M2 0.336 0.325 906.717 906.736 907.651 931.307 908.628 970.553 878.837 904.965 

M3 0.262 0.250 1008.076 1008.097 1009.114 1035.415 1010.200 1079.048 977.079 1006.128 

M4 0.084 0.069 1251.814 1251.840 1253.103 1285.763 1254.452 1339.946 1213.322 1249.395 

M5 0.424 0.415 786.939 786.956 787.750 808.281 788.597 842.343 762.742 785.418 

M8 0.658 0.647 481.926 481.961 483.056 501.663 484.267 533.706 460.053 479.874 

M9 0.658 0.646 482.817 482.851 483.949 502.590 485.162 534.692 460.904 480.761 

M11 0.491 0.474 717.506 717.557 719.188 746.891 720.991 794.597 684.941 714.451 

M12 0.545 0.529 642.128 642.174 643.634 668.426 645.247 711.120 612.984 639.394 

M13 0.351 0.329 915.139 915.205 917.285 952.618 919.584 1013.464 873.604 911.243 

M14 0.515 0.499 683.489 683.538 685.092 711.481 686.809 756.925 652.468 680.579 

M24 0.577 0.555 616.095 616.200 618.694 649.965 621.551 705.900 579.412 611.529 

M34.1 0.662 0.650 477.138 477.172 478.257 496.679 479.456 528.403 455.483 475.107 

M35.2 0.649 0.643 479.585 479.595 480.079 492.591 480.596 513.350 464.838 478.658 

M36.2 0.355 0.344 881.283 881.302 882.191 905.183 883.140 943.329 854.185 879.580 

M37.1 0.500 0.483 705.310 705.361 706.964 734.196 708.736 781.091 673.299 702.308 

M38.2 0.562 0.555 598.657 598.670 599.274 614.893 599.919 640.805 580.249 597.501 

M39.1 0.358 0.337 904.810 904.875 906.932 941.866 909.205 1002.026 863.744 900.958 

M40.2 0.545 0.538 621.598 621.611 622.238 638.456 622.908 665.361 602.484 620.397 

M43.2 0.702 0.687 433.344 433.418 435.173 457.168 437.182 496.510 407.543 430.133 

M44.4 0.659 0.648 480.556 480.590 481.682 500.237 482.890 532.188 458.745 478.510 

M46.3 0.705 0.679 457.135 457.400 461.587 495.346 466.759 560.645 417.626 449.824 

M48.4 0.511 0.495 689.521 689.571 691.138 717.760 692.870 763.605 658.227 686.586 

M50.4 0.610 0.597 549.382 549.421 550.670 571.881 552.050 608.409 524.448 547.043 

M52.6 0.726 0.707 411.448 411.586 414.195 439.915 417.296 487.736 381.322 406.782 
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TABLE 9 (continued): The corresponding selection criteria value for the selected models  
 

Selected 

Model R2 

Adj 

R2 AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M53.7 0.673 0.656 476.262 476.344 478.272 502.445 480.480 545.684 447.905 472.733 

M54.7 0.702 0.686 434.526 434.600 436.359 458.414 438.374 497.864 408.654 431.305 

M57.10 0.730 0.707 418.152 418.395 422.224 453.105 426.955 512.835 382.013 411.465 

M58.4 0.669 0.652 481.832 481.915 483.865 508.321 486.100 552.066 453.144 478.261 

M59.4 0.683 0.667 461.220 461.299 463.166 486.576 465.305 528.450 433.759 457.802 

M60.3 0.694 0.673 459.577 459.731 462.645 491.373 466.109 544.788 425.927 454.365 

M62.4 0.684 0.668 459.560 459.639 461.499 484.825 463.630 526.548 432.198 456.154 

M63.4 0.680 0.664 465.657 465.737 467.622 491.257 469.781 533.533 437.932 462.206 

M66.5 0.598 0.584 567.373 567.414 568.704 590.610 570.129 628.334 541.623 564.958 

M67.3 0.556 0.526 666.708 666.931 671.159 712.835 676.184 790.324 617.892 659.147 

M68.8 0.761 0.735 382.599 382.952 387.739 420.164 393.894 485.469 344.657 374.442 

M69.9 0.731 0.707 417.387 417.629 421.452 452.275 426.174 511.896 381.313 410.712 

M70.10 0.719 0.699 422.904 423.045 425.727 452.163 428.915 501.315 391.939 418.108 

M71.10 0.701 0.680 449.806 449.957 452.809 480.926 456.199 533.205 416.872 444.705 

M72.11 0.638 0.620 527.059 527.149 529.282 556.034 531.727 603.885 495.677 523.152 

M73.15 0.813 0.778 339.258 340.487 351.193 393.049 367.645 493.222 289.874 322.813 

M74.10 0.761 0.735 382.599 382.952 387.739 420.164 393.894 485.469 344.657 374.442 

M75.11 0.733 0.715 401.187 401.321 403.865 428.943 406.889 475.571 371.812 396.637 

M76.9 0.740 0.713 415.546 415.929 421.128 456.345 427.813 527.273 374.336 406.686 

M77.12 0.684 0.668 459.560 459.639 461.499 484.825 463.630 526.548 432.198 456.154 

M79.22 0.794 0.764 351.359 352.051 359.385 396.320 369.653 477.216 308.045 339.478 

M80.19 0.816 0.772 355.907 358.053 373.977 423.521 401.091 553.855 296.807 332.777 

 

 

Result of the individual test of the Model M73.15 are shown in Table 10 (all 
the p-values < 0.05) and the corresponding result global test is shown in 

Table 11.  
 

TABLE 10: The final coefficients of model M73.15 
 

Unstandardized 

Coefficients 

Standardized 

Coefficients t p-value 

Variables B Std. Error Beta     

(Constant) 101.891 26.906  3.787 0.000 

x2 -26.829 7.454 -1.162 -3.599 0.001 

x4 -2.615 0.733 -1.710 -3.565 0.001 

x12 0.041 0.009 6.538 4.581 0.000 

x15 -0.074 0.025 -3.255 -2.990 0.004 
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TABLE 10 (continued): The final coefficients of model M73.15  
 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t p-value 

Variables B Std. Error Beta     

x45 3.128 0.990 2.772 3.158 0.003 

x123 -0.009 0.002 -6.966 -4.412 0.000 

x135 0.028 0.008 5.378 3.654 0.001 

x145 -0.001 0.000 -2.082 -3.043 0.004 

x234 0.155 0.040 2.802 3.911 0.000 

x345 -0.558 0.258 -1.772 -2.162 0.035 

 

 
Thus, the best model is M73.15 where  

 

2 4 12 15101.891 26.829 2.615 0.41 0.017Y X X X X= − − + −  

   
45 123 135 145 234 3453.128 0.009 0.028 0.001 0.155 0.558X X X X X X+ − + − + −  

 

The house selling price will decreases 26.829 times when number of 

rooms (X2) increases by 1 unit. For variable X4, the house selling price 
decrease 2.615 times when age of the house (X4) increases by 1 unit. When 

the interaction effect between square feet (X1) and X2 increase 1 unit, the 

house selling price increase by 0.41 times. The constant shows that the 

starting house sales price is predicted as 101.891.  

 
TABLE 11: The ANOVA table of global test for model M73.15 

 

Source of 

variations 

Sum of 

Squares 
df Mean Square F p-value 

Regression 65701.989 10 6570.199 22.666 0.000 

Residual 15073.445 52 289.874   

Total 80775.434 62    

 

For a clear view, the house selling price increase when square feet of 

house interact with number of rooms and also when age interact with 

bathrooms. When square feet, number of bedrooms and number of 
bathrooms interact together the house selling price will increase. House 

selling price also will increase when number of bedrooms, age and number 

of bathrooms interact together. 
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There are 15 variables omitted from the model M73. A Wald Test is 

carried out to the final model (Ramanathan, 2002) where the restricted 
model (M73.15) is the selected model and unrestricted model is the initial 

possible model (M73).  

 
The unrestricted model (Possible Model): 

 

U: 

0 1 1 2 2 3 3 4 4 5 5 12 12 13 13 14 14 15 15 23 23 24 24 25 25 34 34 35 35

45 45 123 123 124 124 125 125 134 134 135 135 145 145 234 234 235 235 245 245 345 345     

Y X X X X X X X X X X X X X X

X X X X X X X X X X X u

β β β β β β β β β β β β β β β

β β β β β β β β β β β

= + + + + + + + + + + + + + +

+ + + + + + + + + + + +

 
The restricted model (Selected Model): 

 

R:          

0 2 2 4 4 12 12 15 15 45 45 123 123 135 135 145 145 234 234 345 345Y X X X X X X X X X X vβ β β β β β β β β β β= + + + + + + + + + + +  . 

 
The hypothesis: 

 

H0:    

1 3 5 13 14 23 24 25 34 35 124 125 134 235 245 0β β β β β β β β β β β β β β β= = = = = = = = = == = = = = =  

 

H1:    At least one 
sβ  is nonzero 

 
Decision: 

Fcal =
UU

URUR

DFSSE

DFDFSSESSE

/

)/()( −−
                 

              

=
( ) /( )

/( )

R U

U

SSE SSE K m

SSE n K

− −

−
 

        
= 0.23468 

  

Ftable =F(21, 36, 5%) =1.92. Since Fcalc is less than Ftable, H0 is 

accepted. Thus, this is justified (Lind et al., 2005). The similar procedure of 

Wald Test is carried out for all other selected models and same results are 
obtained. 
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Based on the best model, the predicted Y  was determined.  Using the 

residuals obtained, randomness test is carried out. Both randomness test and 
residual scatter plot indicates that the residuals are random and independent. 

That means the model M73.15 is the best model to describe the house selling 

price in Ohio and it’s ready to be used for further analysis.  

 

 

DISCUSSION & CONCLUSION 

To minimize the effects of bias, SPSS exclude temporarily variables 

that contribute to multicollinearity (when there exists a high level of 
correlation between some of the independent variables). Multicollinearity 

has some effects in finding the final model. Thus, careful selection/treatment 

should be taken at initial stage. Since there exist effect of higher order 
interaction, polynomial of higher order interaction should be included in the 

possible models. Other variables such as number of garage, location of the 

house and other relevant characteristics should be considered for future 

study.  

 

 

Figure 2: The residuals for model M73.15 

 

Based on the observations of model M73.15, the p-values of main 

variables and removed variables in each step are summarized in Table 12 

and Figure 3, where the p-value decreases to a value less than 0.05 to the 

corresponding removed variables. At the same time the p-value for the main 
independent variables converge to less than 0.05. This indicates that the 

corresponding variables contribute distinctly to the selling price. The study 

shows that model M73.15 is the best model to describe the house selling 
price in Ohio. Now the house selling price model is ready for forecasting to 

make a logical decision to determine the house selling price. The 

randomness test shows that model M73.15 has random and independent 
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observation residuals. Model M73.15 also shows that there exists interaction 

effect. The floor area and number of rooms interact together. 

 
TABLE 12: The summary of p-value for model M73.15 

 

Step X1 X2 X3 X4 X5 Removing p-value 

0 0.310 0.225 0.834 0.075 0.471 X235 0.892 

1 0.779 0.540 0.693 0.547 0.842 X124 0.960 

2 0.687 0.514 0.691 0.515 0.842 X13 0.897 

3 0.500 0.409 0.805 0.429 - X5 0.923 

4 0.456 0.406 0.815 0.312 - X25 0.906 

5 0.441 0.233 0.712 0.308 - X24 0.772 

6 0.469 0.012 0.577 0.109 - X134 0.805 

7 0.475 0.010 0.612 0.103 - X34 0.688 

8 0.426 0.007 - 0.088 - X3 0.755 

9 0.353 0.006 - 0.082 - X245 0.596 

10 0.430 0.004 - 0.093 - X14 0.668 

11 0.497 0.003 - 0.004 - X125 0.572 

12 - 0.002 - 0.003 - X1 0.697 

13 - 0.001 - 0.001 - X35 0.347 

14 - 0.001 - 0.001 - X23 0.374 

15 - 0.001 - 0.001 - - <0.05 

 

 

 
 

Figure 3: The convergence of p-value for model M73.15 

 

This model shows that the variables like, the floor area, number of 

bedrooms and number of bathrooms does not have a direct effect on the 
selling price of a house. These variables cannot act as a single-effect 

variable. The number of rooms and age of the house can have a direct effect 



A Case Study of Determination of House Selling Price Model Using Multiple Regression  

 

Malaysian Journal of Mathematical Sciences 

 
43 

in determining the house selling price. But when the number of rooms or age 

increase, the house selling price decreases.  
 

This model also shows that, to determine a house selling price, the 

variables should interact with each other. Based on the best model, it can be 
concluded that to determine a house selling price, one should consider house 

characteristics like floor area, number of rooms, number of bedrooms, age of 

the house and number of bathrooms. Besides these variables, a person’s 

willingness/readiness to buy a house, income status, and the facilities around 
the housing areas can also affect the house selling price.  

 

As can be seen from the above finding and elaborate discussion, best 
multiple regression could successfully be obtained where several single 

independent variables and higher order interactions had been included in the 

initial models. Thus, in a similar fashion, local data with unbiased details on 

house sale or related data can also be applied. Hence, different model is 
identified with different set of independent variables and interaction 

variables. 
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